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Abstract

The elementary one-dimensional wave theory is often used to describe the propagation of longitudinal
stress waves along a slender bar. However, for relatively large diameter bars and high-frequency waves,
geometrical wave dispersion due to lateral inertia occurs, rendering this single-mode theory inaccurate. In
this paper, an approximate four-mode rod equation for a circular bar that takes wave dispersion into
account is presented. Little difference is observed between the dispersion curves of the four-mode equation
and the Pochhammer–Chree equation that gives the exact propagation coefficient for an infinite circular
bar. The advantage of the former is that its solution can be computed directly whereas the latter requires an
iterative procedure. Also presented are different orders of rod approximation equations derived from the
Pochhammer equation, each of which can also be solved directly. Applications of the more accurate rod
equations include correcting for wave dispersion in a split Hopkinson pressure bar (SHPB) test, and more
accurately determining the frequency-dependent elastic modulus of a viscoelastic bar from an
experimentally measured propagation coefficient.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

In impact engineering it is often required to accurately predict the propagation of longitudinal
stress waves along a slender bar. A classic example is the split Hopkinson pressure bar (SHPB)
see front matter r 2005 Elsevier Ltd. All rights reserved.
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apparatus. The SHPB is indespensable for determining the dynamic properties of materials.
Essentially it consists of the specimen to be tested placed between an input and an output bar,
both of which are instrumented with strain gauges. The input bar is impacted with a striker
resulting in an incident stress wave propagating through the bar. At the bar–specimen interface,
part of the incident wave is reflected back into the input bar while the remaining wave is
transmitted through the output bar. The normal force and displacement at the proximal end of
the specimen is determined from the incident and reflected strain waves in the input bar. For the
two strains to be measured separately (i.e., for no wave overlap to occur), the measurements are
taken at the centre of the bar and shifted in time to the end of the bar, thus effectively using the
elementary one-dimensional wave theory. This procedure is fine when the effects of wave
dispersion and attenuation are minimal. This is true in the case of an elastic medium of
propagation, and either relatively low-frequency waves or a small diameter bar. However, when
the frequency of the disturbance is high, such as in high strain-rate loading, or the diameter of the
bar is relatively large, the effects of lateral inertia become significant. This leads to geometrical
wave dispersion.
It is well known that when testing low impedance specimens such as cellular solids, the use of

low impedance bars, such as polymer bars, is preferable. However, due to the rheological
properties of these viscoelastic bars, material wave dispersion and attenuation occurs [1]. A
further issue is that since there is a practical limitation on how small cellular solid specimens can
be made, and due to the lower elastic modulus of polymer bars compared to elastic bars, the
viscoelastic SHPB set-up often requires larger diameter bars [2]. Therefore, geometrical dispersion
also occurs.
In both of the above cases the elementary wave theory cannot accurately predict the

propagation of stress waves along the bar. The exact propagation in a circular bar of infinite
length can be described by the Pochhammer–Chree equation. This equation can still be used with
sufficient accuracy for long finite bars [3]. However, the disadvantages of using the Pochhammer
equation are that it cannot be solved directly and it is only applicable to bars of circular cross-
section. Green [4] provided a review of several approximate rod theories for longitudinal wave
propagation with varying levels of success. In this paper a four-mode rod equation is presented
that is comparable to the Pochhammer equation in terms of the accuracy of the dominant
propagating mode, without suffering from its limitations. The four-mode equation is derived for a
circular bar, however since the procedure is based on approximating two-dimensional
displacement fields through the bar, similar equations can be derived for other simple cross-
sections. Also presented are different orders of approximation to the Pochhammer equation, all of
which can also be solved directly.
In computing normal forces in the viscoelastic SHPB set-up, the elastic modulus of the bars

employed need to be known accurately. In contrast to elastic materials, the elastic modulus of
viscoelastic materials is frequency-dependent, due to the damping brought about by internal
viscosity [1]. As a result, the elastic modulus obtained from a static test can no longer be used in
dynamic experiments. The problem increases when it is recognised that the mechanical properties
of a viscoelastic rod may also vary slightly with the extrusion process [5]. A standard curve of
elastic modulus against frequency would then become inaccurate. This can be overcome by
determining the complex elastic modulus of each rod experimentally. Bacon [5] demonstrated an
experimental method to determine the propagation coefficient of a viscoelastic rod by making use
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of a single strain measurement along a bar. By applying this method it is possible to rearrange the
approximate rod equations and thus determine the complex elastic modulus. Compared to
computing the propagation coefficient, the same percentage error occurs at a lower frequency
when determining the complex elastic modulus. For this purpose the elementary theory is
therefore limited to even smaller diameter bars and lower-frequency waves. The four-mode
equation is again shown to be an extremely good approximation in comparison to the true elastic
modulus. Use of the more accurate rod approximation in the viscoelastic SHPB set-up would
allow the conditions at the end of the bars to be more accurately evaluated, thus providing a
better understanding of the specimens being tested.
The paper is arranged as follows: in Section 2 the four-mode equation and the Pochhammer

approximation equations are developed; Section 3 compares the accuracies of the rod equations
for determining both the phase velocity of an aluminium bar, and the elastic modulus from the
exact propagation coefficient; finally, Section 4 concludes the paper. In the equations to follow, it
is valid for all the material properties to be a function of frequency, despite the omission of their
dependency. The equations are therefore applicable to viscoelastic solids.
2. Rod theories

2.1. Single-mode equations

In brief, the elementary wave theory assumes deformation only takes place in the axial
direction, and that the deformed planes remain parallel to the undeformed planes. Thus, it is a
single-mode theory since only 1dof in the possible deformation is present. This leads to the
following governing equation of motion:

q2u
qx2
¼

1

E=r
q2u
qt2

, (1)

where u ¼ uðx; tÞ is the single function describing the axial displacement, x is the axial distance
along the bar, t is time, and E and r are the elastic modulus and mass density of the bar,
respectively. For an elastic material,

ffiffiffiffiffiffiffiffiffi
E=r

p
¼ c0 is the constant elementary longitudinal phase

velocity. Firstly, assume a harmonic solution of the form

uðx; tÞ ¼
X
o

~uðx;oÞegxþiot, (2)

where o is circular frequency, i is the imaginary unit, and g ¼ gðoÞ is the propagation coefficient
of the bar and is defined as

gðoÞ ¼ aðoÞ þ ikðoÞ,

where aðoÞ and kðoÞ are the attenuation coefficient and wavenumber, respectively. Substituting
Eq. (2) into Eq. (1) leads to the following solution for g2:

g2 ¼ �
ro2

E
.
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As the lateral dimensions of the bar increases, or the frequency of the propagating wave increases,
the effects of lateral inertia become significant, which leads to erroneous results in the elementary
theory.
The Love theory extends the elementary theory by taking into account the energy that goes into

lateral deformation. The governing equation of motion thus becomes [6]

q2u
qx2
þ
n2rJ

EA

q4u
qx2qt2

¼
1

E=r
q2u
qt2

,

where n and J are Poisson’s ratio and second polar moment of area, respectively. Following the
same procedure as before, the propagation coefficient for a rod of circular cross-section is

g2 ¼ �
ro2

E � ra2o2n2=2
,

where a is the radius of the bar. This obviously reduces to the elementary theory when a ¼ 0 or
n ¼ 0, corresponding to suppressed lateral effects.
2.2. Multimode equations

A more accurate description of the rod deformation can be obtained by increasing the number
of possible deformation modes (i.e., dof of the deformation). The functions describing the exact
displacement fields through the cross-section of a rod can be expressed as an infinite series of
orthogonal polynomials [7]. For a circular rod it is convenient to employ cylindrical coordinates
to describe the axial and radial displacements, noting that from symmetry the circumferential
displacement is zero. Mindlin and McNiven [8] represented these displacements in terms of the
classical Jacobi polynomial, such that

uxðx; r; tÞ ¼
X1
n¼0

UnðrÞunðx; tÞ, (3a)

urðx; r; tÞ ¼
X1
n¼0

VnðrÞvnðx; tÞ, (3b)

uyðx; r; tÞ ¼ 0, (3c)

where ux, ur and uy are the axial, radial and circumferential displacements, respectively, un and vn

are the coefficients in the series expansions, n is the mode number and r is the radial distance from
the neutral axis. The orthogonal polynomials defined over the interval ½0; a� are

UnðrÞ ¼
Xn

k¼0

ð�1Þk
n

k

� �
ðnþ 1ÞðkÞ

k!

r

a

� �2k

, (4a)

VnðrÞ ¼
Xn

k¼0

ð�1Þk
n

k

� �
ðnþ kÞðkÞ

ðk þ 1Þ!

r

a

� �2kþ1

, (4b)
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where

n! ¼
nðn� 1Þ � � � 1 when na0;

1 when n ¼ 0;

(

nðkÞ ¼
nðnþ 1Þ � � � ðnþ k � 1Þ when ka0;

1 when k ¼ 0;

(

n

k

� �
¼

n!

k!ðn� kÞ!
,

are factorial, rising factoring, and the binomial coefficient, respectively. By representing the
displacements in this way, the following favourable properties can be made use of in deriving the
multimode equations of motion [8]Z a

0

rUnðrÞUmðrÞdr ¼
a2

2ð2nþ 1Þ
dnm, (5a)

Z a

0

rVnðrÞVmðrÞdr ¼
a2

4ðnþ 1Þ3
dnm, (5b)

where dnm is the Kronecker delta defined as

dnm ¼
1 when n ¼ m;

0 when nam:

(

The first two polynomials of each series, which describe the possible deformation modes, can be
expressed as

U0ðrÞ ¼ 1, (6a)

U1ðrÞ ¼ 1�
2r2

a2
, (6b)

V0ðrÞ ¼
r

a
, (6c)

V1ðrÞ ¼
r

a
�

3r3

2a3
. (6d)

These deformation modes are depicted in Fig. 1. As the mode number increases, the accuracy of
the approximate displacement profile improves. Note that when deriving the higher-order rod
equations, the lower-order terms are still included, thus increasing the number of deformation dof
in the rod.
It is easy to see that the elementary theory only uses U0 in approximating the deformation. The

Mindlin–Herrmann rod equation [9] considers radial deformation by including V0 in the
derivation, therefore making it a two-mode theory. This leads to solving a quadratic equation in
g2. For such multimode rod equations, including the Pochhammer equation, only one of the
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solutions that corresponds to the first (i.e., dominant) propagating mode is of any real significance
at typical testing frequencies [3], and is therefore the only mode of interest here. Mindlin and
McNiven [8] further added the second axial term, namely U1, and presented a more accurate
three-mode theory. In this case the propagation coefficient is obtained by solving a cubic in g2.
In the following section, a four-mode rod equation for a circular rod is presented by describing

the displacement through the cross-section of the rod in terms of the first two axial and radial
deformation modes given by Eq. (6). Compared to the three-mode rod equation this derivation
includes the second radial term, V1. The motivation for extending the previous rod equations to
four modes is that this will inevitably lead to the higher-order quartic (or biquadratic) equation in
g2, which may improve on the accuracy of the three-mode equation. The solutions to such
equations can be determined directly in terms of a finite algebraic expression using the relatively
simple quartic formula. However, according to the Abel–Ruffini theorem, the roots of
polynomials of degree greater than four cannot be determined as a finite algebraic expression
since they cannot be expressed as a finite number of addition, subtraction, multiplication,
division, and root extraction operations [10]. The added complexity in solving these higher-order
polynomials may make an iterative method more attractive.

2.3. A four-mode rod equation

Omitting the function dependencies for brevity, the displacements in a circular rod are
approximated by

ux � U0u0 þU1u1 ¼ uþ 1�
2r2

a2

� �
f, (7a)

ur �V0v0 þV1v1 ¼
r

a
vþ

r

a
�

3r3

2a3

� �
c, (7b)

uy ¼ 0, (7c)

where the displacement variables u ¼ uðx; tÞ, v ¼ vðx; tÞ, f ¼ fðx; tÞ and c ¼ cðx; tÞ replace the
series coefficients u0, v0, u1 and v1, respectively. The corresponding non-zero strains are

�xx ¼
qux

qx
, (8a)
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�rr ¼
qur

qr
, (8b)

�yy ¼
ur

r
þ

1

r

quy

qy
, (8c)

�xr ¼
qux

qr
þ

qur

qx
. (8d)

From the generalised Hooke’s law, the stresses in an isotropic solid are given by [11]

sxx ¼ lDþ 2m�xx, (9a)

srr ¼ lDþ 2m�rr, (9b)

syy ¼ lDþ 2m�yy, (9c)

sxr ¼ m�xr, (9d)

where D ¼ �xx þ �rr þ �yy, and m and l are Lamé’s constants defined by

m ¼
E

2ð1þ nÞ
and l ¼

En
ð1� 2nÞð1þ nÞ

. (10)

Substituting Eq. (7) into Eq. (8) and then into Eq. (9) leads to the following stress–displacement
relationships:

sxx ¼ ð2mþ lÞ
qu

qx
þ 1�

2r2

a2

� �
qf
qx

� �
þ
2

a
l vþ 1�

3r2

a2

� �
c

� �
, (11a)

srr ¼
2

a
ðmþ lÞ vþ 1�

9r2

2a2

� �
c

� �
þ l

qu

qx
þ 1�

2r2

a2

� �
qf
qx
þ

3r2

a3
c

� �
, (11b)

syy ¼ srr þ
6mr2

a3
c, (11c)

sxr ¼
m
a

r
qv

qx
�

4r

a
fþ r�

3r3

2a2

� �
qc
qx

� �
. (11d)

The stress equations of motion of elasticity for the given axisymmetrical problem are [11]

qsxr

qr
þ

qsxx

qx
þ

1

r
sxr ¼ r

q2ux

qt2
, (12a)

qsrr

qr
þ

qsxr

qx
þ
srr � syy

r
¼ r

q2ur

qt2
. (12b)
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Observing that for the general case the right-hand side of Eq. (12a) can be written in terms of the
orthogonal polynomials as X1

n¼0

rUn
q2un

qt2
,

which, from property (5), when multiplied by rUm and integrated with respect to r results in

1

2ð2mþ 1Þ
ra2 q2um

qt2
.

Similarly, multiplying the right-hand side of Eq. (12b) by rVm and integrating with respect
to r gives

1

4ðmþ 1Þ3
ra2

q2vm

qt2
.

The significance of this result is that no matter how many modes are included, multiplying the
stress equations of motion by the functions rUm and rVm and integrating over the cross-section
leads to an exact right-hand side that contains only one variable, namely um and vm, respectively.
The equations of motion for u and f are obtained by multiplying Eq. (12a) separately by r and
r� 2r3=a2 and integrating over the cross-section, noting that

srr ¼ sxr ¼ 0 when r ¼ a.

Similarly, the equations of motion for v and c are obtained by multiplying Eq. (12b) by r2=a and
r2=a� 3r4=2a3 and integrating over the cross-section. Thus, the four governing equations of
motion are

a2ð2mþ lÞ
q2u
qx2
þ 2al

qv

qx
� al

qc
qx
¼ ra2

q2u
qt2

, (13a)

�4al
qu

qx
þ a2m

q2v
qx2
� 8ðmþ lÞv� 4am

qf
qx
þ 4ðmþ lÞc ¼ ra2

q2v
qt2

, (13b)

6am
qv

qx
þ a2ð2mþ lÞ

q2f
qx2
� 24mfþ 3al

qc
qx
¼ ra2

q2f
qt2

, (13c)

16al
qu

qx
þ 32ðmþ lÞv� 16al

qf
qx
þ a2m

q2c
qx2
� 16ð7mþ 4lÞc ¼ ra2

q2c
qt2

. (13d)

Again assuming harmonic solutions for u, v, f and c, and substituting them into Eq. (13), the
following simultaneous equation is obtained:

a11 2alg 0 �alg

a22 2amg �2ðmþ lÞ

a33 alg

sym a44

0
BBBB@

1
CCCCA

~u

~v
~f
~c

0
BBBB@

1
CCCCA ¼ 0, (14)
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where the diagonal terms in the symmetric coefficient matrix are given by

a11 ¼ a2ð2mþ lÞg2 þ ra2o2,

a22 ¼ 4ðmþ lÞ � 1
2
ða2mg2 þ ra2o2Þ,

a33 ¼
1
3
ða2ð2mþ lÞg2 þ ra2o2Þ � 8m,

a44 ¼ 7mþ 4l� 1
16
ða2mg2 þ ra2o2Þ.

Equating the determinant of the coefficient matrix to zero gives the characteristic equation for the
propagation coefficient, which as expected results in a quartic in g2 given by

C1g8 þ C2g6 þ C3g4 þ C4g2 þ C5 ¼ 0, (15)

where

C1 ¼ a8m2ð2mþ lÞ2,

C2 ¼ a6mð2mþ lÞð2ra2o2ð3mþ lÞ � 24mð10mþ 11lÞÞ,

C3 ¼ a4ðr2a4o4ð13m2 þ 7mlþ l2Þ � 24ra2o2mð42m2 þ 55mlþ 14l2Þ

þ 192m2ð9mþ 4lÞð2mþ 3lÞÞ,

C4 ¼ a2ð2r3a6o6ð3mþ lÞ � 24r2a4o4ð28m2 þ 26mlþ 3l2Þ

þ 192ra2o2mð47m2 þ 62mlþ 16l2Þ � 9216m2ð4m2 þ 8mlþ 3l2ÞÞ,

C5 ¼ ra2o2ðra2o2 � 24mÞðra2o2ðra2o2 � 24ð5mþ 3lÞÞ þ 384ðmþ lÞð2mþ lÞÞ.

Eq. (15) may appear complicated, however it can be easily solved directly using the quartic
formula (see, for example, Ref. [12]). Note that the governing equations of motion for the
elementary, two-mode and three-mode theories can be obtained from Eq. (13) by setting the
relevant displacement variables to zero. In the case of the elementary theory, n ¼ 0 since Poisson’s
effect is neglected.

2.4. The Pochhammer–Chree equation

The exact propagation of stress waves in an infinite rod of circular cross-section can be
described by the Pochhammer–Chree equation. For a general rod of either elastic or viscoelastic
material, this equation is given by [13]

2a
a
ðb2 � g2ÞJ1ðaaÞJ1ðbaÞ � ðb2 þ g2Þ2J0ðaaÞJ1ðbaÞ þ 4g2abJ1ðaaÞJ0ðbaÞ ¼ 0, (16)

where

a2 ¼
ro2

2mþ l
þ g2 and b2 ¼

ro2

m
þ g2
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and J0 and J1 are the zero- and first-order Bessel functions of the first kind. Eq. (16) can be
expressed more concisely as [14]

4g2a2J1ðbaÞ � ðb2 þ g2Þ2J1ðaaÞ þ 2a2ðb2 � g2Þ ¼ 0, (17)

where

J1ðxÞ ¼ x
J0ðxÞ

J1ðxÞ
, (18)

is the modified quotient of Bessel functions of the first kind and was tabulated in Ref. [15]. (The
modified quotient will simply be referred to as the Onoe function.) Eq. (16) has to be solved
iteratively for the real and imaginary parts of g.

2.5. Approximating the Pochhammer equation

The zero- and first-order Bessel functions can be expressed as the following infinite series [7]:

J0ðxÞ ¼
X1
k¼0

ð�1Þkðx=2Þ2k

ðk!Þ2
¼ 1�

x2

4
þ

x4

64
� � � � , (19a)

J1ðxÞ ¼ �
d

dx
½J0ðxÞ� ¼

x

2
�

x3

16
þ � � � . (19b)

By approximating the Bessel functions as finite polynomials of a certain order, and substituting
these polynomials into Eq. (16), various levels of approximation for the Pochhammer equation
can be obtained. By doing this, comparisons can be made between directly solvable Pochhammer
approximations and the deformation mode approximations. For a given approximation order the
equations are not expected to be equivalent since one set of equations contains the approximation
in the Bessel functions and the other in the displacement field.
Probably the easiest method to derive the approximations is by obtaining the series expansion

for the Onoe function and subsequently using Eq. (17). This can be achieved in the following
manner:

ð2=xÞJ1ðxÞ ¼
X1
k¼0

ð�1Þkðx=2Þ2k

k!ðk þ 1Þ!

¼ 1�
X1
k¼1

ð�1Þkþ1ðx=2Þ2k

k!ðk þ 1Þ!

¼ 1� z,

where

z ¼
X1
k¼1

ð�1Þkþ1ðx=2Þ2k

k!ðk þ 1Þ!
. (20)

By making use of the negative binomial series, which is given by

ð1� zÞ�1 ¼ 1þ zþ z2 þ z3 þ � � � if jzjo1,



ARTICLE IN PRESS

S.P. Anderson / Journal of Sound and Vibration 290 (2006) 290–308300
it follows that

½ð2=xÞJ1ðxÞ�
�1 ¼

X1
m¼0

X1
k¼1

ð�1Þkþ1ðx=2Þ2k

k!ðk þ 1Þ!

 !m

.

Thus the Onoe expansion series and the terms up to and including the fourth-order are given by

J1ðxÞ ¼ 2J0ðxÞ½ð2=xÞJ1ðxÞ�
�1

¼ 2
X1
k¼0

ð�1Þkðx=2Þ2k

ðk!Þ2
�
X1
m¼0

X1
k¼1

ð�1Þkþ1ðx=2Þ2k

k!ðk þ 1Þ!

 !m

¼ 2�
x2

4
�

x4

96
�

x6

1536
�

x8

23 040
� � � � . ð21Þ

It is easy to verify that substituting only the first term of this expansion into Eq. (17),
corresponding to the zero-order approximation, reduces the exact equation to the elementary
theory.
The negative binomial series will only converge if jzjo1, and so in order to test the applicability

of the series expansion presented above, Fig. 2 shows the variation of jzj with x. It is clear that the
expansion series does not converge for all values of x, however provided xoxc � 3:83 then the
expansion series is valid. However, since the series is to be approximated by truncation, the main
concern is the increase in the truncation error as x increases, and not the convergence of the series.
0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

|z
|

Fig. 2. Applicability of the expansion series for the Onoe function.
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The reason for the breakdown at xc is that there are an infinite number of discontinuities in J1,
which can be understood by observing that the roots of the two Bessel functions do not coincide.
Therefore there are singularities in J1 due to J1. The first discontinuity occurs at xc and can be
stated as

J1ðx
�
c Þ ¼ �1 and J1ðx

þ
c Þ ¼ þ1. (22)

Using two of the recurrence relations for Bessel functions of the first kind, the first derivative of
J1 can be shown to be

d

dx
½J1ðxÞ� ¼ 2

J0ðxÞ

J1ðxÞ
� x 1þ

J0ðxÞ
2

J1ðxÞ
2

� �
. (23)

From Eqs. (22) and (23) it is evident that a discontinuity in the derivative also exists, which can be
stated as

d

dx
½J1ðx

�
c Þ� ¼ �1. (24)

The significance of this result, related to an actual rod, is discussed later in the paper. A
comparison between the exact Onoe function and the expansion series at various levels of
approximation is shown in Fig. 3.
Retaining the first two terms of the Onoe expansion yields the first-order approximation,

which, as with the zero-order approximation, is described by a monic polynomial. The solution is
given by

g2 ¼
ro2ð8ðmþ lÞ � ra2o2Þ

ra2o2ð2mþ lÞ � 8mð2mþ 3lÞ
. (25)
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-60

-40

-20

0

20

40

60

x

O
n

o
e 

fu
n

ct
io

n

(a)
0 0.5 1 1.5 2 2.5 3 3.5

-10

-8

-6

-4

-2

0

2

x

O
n

o
e 

ap
p

ro
xi

m
at

io
n

(b)

Fig. 3. (a) The Onoe function; and (b) its various orders of approximation given by Eq. (21). (First-order, dashed line;

second-order, solid line with dot markers; third-order, dash-dot line; exact function, solid line.)
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Similarly, retaining the first three terms of the expansion yields the second-order approximation,
which is given by

C1g6 þ C2g4 þ C3g2 þ C4 ¼ 0, (26)

where

C1 ¼ 4a6mðmþ lÞð2mþ lÞ,

C2 ¼ ra6o2ð8m2 þ 12mlþ 3l2Þ,

C3 ¼ 2a2ðr2a4o4l� 12ra2o2ð2mþ lÞ2 þ 96mð2mþ lÞð2mþ 3lÞÞ,

C4 ¼ 192ra2o2ð2mþ lÞðmþ lÞ � 24r2a4o4ð2mþ lÞ � r3a6o6.

The first four terms of the expansion gives the following third-order approximation:

C1g8 þ C2g6 þ C3g4 þ C4g2 þ C5 ¼ 0, (27)

where

C1 ¼ 8a8mðmþ lÞð2mþ lÞ2,

C2 ¼ a6ð2mþ lÞðra2o2ð32m2 þ 44mlþ 11l2Þ þ 64mðmþ lÞð2mþ lÞÞ,

C3 ¼ ra6o2ðra2o2ð40m2 þ 72mlþ 33l2 þ 4l3=mÞ þ 16ð2mþ lÞð8m2 þ 12mlþ 3l2ÞÞ,

C4 ¼ a2ðr3a6o6ð6mþ 13lþ 4l2=mÞ þ 32r2a4o4lð2mþ lÞ � 384ra2o2ð2mþ lÞ3

þ 3072mð2mþ lÞ2ð2mþ 3lÞÞ,

C5 ¼ ra2o2ð384ð2mþ lÞ2ð8ðmþ lÞ � ra2o2Þ � 16r2a4o4ð2mþ lÞ � r3a6o6Þ.

2.6. Determining the complex elastic modulus

Rewriting m and l in terms of E and n using Eq. (10), and assuming knowledge of g and n, all the
approximate rod equations can be rearranged to give directly solvable polynomials in terms of E.
g can be determined experimentally by taking strain measurements at different positions along a
bar with a travelling stress pulse [5]. If n is not known a priori it can also be determined
experimentally by simultaneously taking axial and circumferential strain measurements at the
same point on the bar [16].
For all the rearranged equations the order of the polynomial is unchanged except the first-order

Pochhammer approximation which turns out to be quadratic. For the polynomials of order
greater than one there obviously exists multiple roots to the equation, only one of which is the
correct solution. However, each root is capable of yeilding the correct modulus if its
corresponding propagation coefficient is used. Using the two-mode equation as an example, if
the correct modulus is given by the first root when g ¼ g1 is the dominant propagation coefficient,
say, then the second root will yield the correct modulus with the second mode propagation
coefficient g2. Since g is determined experimentally it is essentially equal to the dominant
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propagation coefficient, and therefore the correct modulus is easily identified as the only root that
is non-zero at zero frequency. This is because the additional propagating modes only appear at
higher frequencies.
3. Comparison of rod equations

3.1. Deformation mode approximations

Fig. 4 compares the dispersion curves and phase velocities, defined as c ¼ o=k, for a typical
100mm diameter aluminium rod (E ¼ 70GPa, n ¼ 0:3, r ¼ 2700kg=m3) using the exact
Pochhammer equation and four rod approximations; Love, two-mode, three-mode and four-
mode. The elementary theory does not exhibit any dispersion (i.e., constant phase velocity) and
has not been shown. The Love theory is relatively accurate at lower frequencies due to the
inclusion of lateral energy effects, however it diverges at higher frequencies since it does not take
into account cross-section warping and therefore shear stress [4]. For the multimode equations it
can be seen that as the number of modes increases the error when compared to the exact
Pochhammer equation reduces. The four-mode rod equation is surprisingly accurate up to the
plotted frequency of 100 kHz, which is above the highest frequency encountered in most impact
experiments. It is not entirely clear from the figure, however the phase velocity of the two-mode
equation tends towards the exact limiting value equal to the Raleigh phase speed. This results
from the value of an adjustable parameter in the rod equation that is usually chosen to provide
better agreement with the exact solution [6]. For this reason the two-mode equation provides a
better phase velocity approximation at increasingly higher frequencies.
With little difference between the accuracies of the four-mode and Pochhammer equations, the

clear advantage of using the four-mode equation is that its solution can be computed directly,
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Fig. 4. (a) Dispersion curves for an aluminium bar; and (b) phase velocities for a 100mm diameter aluminium bar

determined using the deformation mode approximation rod equations. (Love, dashed line; two-mode, solid line with

dot markers; three-mode, dash-dot line; four-mode, thick solid line; Pochhammer, thin solid line.)
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whereas the Pochhammer equation requires an iterative scheme. Computing the four-mode
solution was found to be more than 2300 times faster than the Pochhammer solution and less than
six times slower than the elementary solution when using 200 data points. Another disadvantage
of using the Pochhammer equation is that at any given frequency Eq. (16) has an infinite number
of roots. Moreover, as the frequency increases there are additional non-trivial imaginary roots
corresponding to new propagating modes. In such cases where multiple roots exist, the actual root
obtained is highly dependent on the initial guess of the iterative scheme. Thus, a small increase in
frequency may result in the solution ‘jumping’ to a different propagating mode. Infact, in
computing the solutions to the Pochhammer equation, the only initial guess that led to the first
mode solution for the complete plotted spectrum was the propagation coefficient from the four-
mode equation.
Another advantage is that since these higher-order equations were developed from approximate

two-dimensional displacement fields through the cross-section of the rod, similar equations can be
developed for a small number of other cross-sectional shapes, for which the Pochhammer
equation no longer applies, provided the deformation plane can be approximated as two-
dimensional. Practical examples include an annular cross-section, which is another axisymme-
trical problem, and a rectangular cross-section with one of the dimensions dominant. Doyle [17]
presented, respectively, the quadratic and cubic characteristic equations for the two- and three-
mode rod equations for a deep rectangular rod.

3.2. Pochhammer approximations

Fig. 5 compares the Pochhammer approximations for the same aluminium rod. The fourth-
order approximation, produced to extend the comparison range, was obtained by substituting the
first five terms of the Onoe expansion into Eq. (17) and solving using an iterative procedure.
Comparing Figs. 4 and 5 it is clear that both the first- and second-order approximations are more
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Fig. 5. (a) Dispersion curves for an aluminium bar; and (b) phase velocities for a 100mm diameter aluminium bar

determined using the Pochhammer approximation rod equations. (First-order, dashed line; second-order, solid line with

dot markers; third-order, dash-dot line; fourth-order, thick solid line; Pochhammer, thin solid line.)
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accurate in the early part of the spectrum than the three-mode equation. This is surprising since
the first-order approximation involves a monic polynomial whereas the three-mode equation
requires solving the higher-order cubic polynomial.
An interesting observation is that increasing from the second to the third and then the fourth

approximation order only marginally improves on the estimate of the phase velocity up to about
38 kHz in comparison to the exact value. However, after around 55 kHz the order of accuracy is
reversed and the rod approximations become progressively less accurate. This can be understood
by considering Fig. 3. Prior to the first discontinuity at xc, the higher the order of the expansion
series, the more accurate the Onoe approximation. After xc the converse is true, which is why the
lower-order approximations become more accurate than higher-order ones.

3.3. Pochhammer equation

Another point worth making regards the discontinuity in J1. Fig. 6 shows the variation of all
the arguments of the Onoe function in Eq. (17) with frequency for the same aluminium rod. Since
the Pochhammer equation has to be solved for real and imaginary parts, the function typically has
four arguments. However, for this particular rod ReðaaÞ ¼ 0, leaving only three arguments to
study. The first argument to cross the first discontinuity of xc is x ¼ ImðaaÞ. This has been circled
in the figure and occurs at a frequency of 45 kHz. This leads to a numerical inaccuracy when
attempting to solve for the imaginary part of Eq. (17) that corresponds to the wavenumber. The
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Fig. 6. Argument of the Onoe function against frequency for a 100mm diameter aluminium bar. (x ¼ ImðaaÞ, solid

line; x ¼ ReðbaÞ, dashed line; x ¼ ImðbaÞ, dash-dot line.)
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Fig. 7. (a) Wavenumber; and (b) group velocity for a 100mm diameter aluminium bar determined using the

Pochhammer equation.

S.P. Anderson / Journal of Sound and Vibration 290 (2006) 290–308306
inaccuracy arises due to machine truncation errors, which can be explained with the aid of Eq.
(24). The truncated value, while relatively small in magnitude, is magnified in J1 near the
discontinuity since on one side of this point the gradient of the function is �1.
To demonstrate this Fig. 7 shows the wavenumber and group velocity, defined as cg ¼ do=dk,

for the aluminium rod that was determined using the Pochhammer equation. At the discontinuity
frequency of 45 kHz we would expect an error in the wavenumber, and indeed one is present
despite its smooth appearance. The error is evidenced in the group velocity and can be explained
due to the ill-conditioned process of differentiation. That is, small perturbations in the data (k)
lead to large perturbations in the solution (cg). Thus a further limitation, albeit a small one, is
placed on the use of the Pochhammer equation when calculation of the group velocity is required.
(Note that in the algorithms used to obtain all the Pochhammer solutions, Eq. (16) was used and
not Eq. (17).)
Two more discontinuity crossings occur in Fig. 6; the argument x ¼ ImðbaÞ crosses the first

discontinuity at a higher frequency of 94 kHz, and the argument x ¼ ImðaaÞ crosses the second
discontinuity, which can be observed from Fig. 2 to occur at x � 7:01, at a frequency of 75 kHz.
However, numerical errors are not clearly present at these frequencies in Fig. 7(b). This is because
the terms preceding the Onoe functions in Eq. (17) increase their dominance at higher frequencies,
such that

4g2a24109J1ðbaÞ at 94 kHz,

ðb2 þ g2Þ24108J1ðaaÞ at 75 kHz.

3.4. Elastic modulus results

Fig. 8 shows the computed elastic modulus for the same aluminium rod using the approximate
rod equations with the exact propagation coefficient that was obtained from the Pochhammer
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Fig. 8. Elastic modulus of an aluminium bar determined using the exact propagation coefficient obtained from the

Pochhammer equation with (a) the deformation mode approximation equations (elementary, thin solid line; Love,

dashed line; two-mode, solid line with dot markers; three-mode, dash-dot line; four-mode, thick solid line); and (b) the

Pochhammer approximation equations (first-order, dashed line; second-order, dash-dot line; third-order, solid line).
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equation. Compared to the phase velocities, significant errors occur in the elastic modulus at an
earlier position in the spectrum. Considering Fig. 8(a) first, the Love theory provides a slightly
better approximation in the early part of the spectrum than the two-mode equation. As would be
expected, as the number of deformation modes increases, the accuracy of the computed modulus
improves. The four-mode equation is very close to the true modulus of 70GPa for the whole
plotted spectrum. From Fig. 8(b) the first-order approximation provides a very good estimate for
the modulus at low frequencies, again being more accurate than both the two- and three-mode
equations, however it rapidly becomes inaccurate with increasing frequency. The third-order
approximation exhibits large inaccuracies at a frequency of 40 kHz. This inaccuracy can also be
observed in Fig. 5 as a kink in the dispersion and phase velocity curves. Similar inaccuracies are
present in the first-order approximation (although not as pronounced) and higher odd-order
approximations, however their origin is not clear. Also worth noting is the numerical error present
in all the curves at a frequency of 45 kHz, which arises from the previously mentioned error in a
propagation coefficient computed from the Pochhammer equation.
4. Conclusions

Several rod equations for longitudinal wave propagation have been compared. A newly
presented four-mode equation, based on lower-order rod approximations, has been shown to
provide extremely good agreement with the exact stress wave propagation as described by the
Pochhammer–Chree equation. The four-mode equation has the advantage of a direct solution
procedure, allowing much faster computation than iteratively solving the Pochhammer equation.
It can also be derived for other two-dimensional cross-sections other than the circular bar.



ARTICLE IN PRESS

S.P. Anderson / Journal of Sound and Vibration 290 (2006) 290–308308
Three approximations based on the Pochhammer equation were also presented. The first-order
Pochhammer approximation, while only a monic polynomial in g2, is very accurate for longer
wavelengths in the spectrum. Compared to the other monic polynomials discussed here, namely,
the elementary and Love theories, the first-order Pochhammer approximation appears far better.
Surprisingly, it is also more accurate than both the two- and three-mode equations for low-
frequencies waves. The only limitation is its sole applicability to circular bars.
Selecting the rod equation to use for a certain level of solution accuracy can be first categorised

into the likely magnitude of the non-dimensional parameter ka, and then into the ease of the
solution procedure. For relatively small values of ka the first-order Pochhammer approximation is
very simple and accurate. For large values of ka the two-mode equation, which is solved using the
well-known quadratic formula, is not sufficiently accurate. As there is little difference in the
complexity of the cubic and quartic formulas, there is no advantage in using the three-mode
equation. Since the accuracy of the four-mode equation is comparable to Pochhammer equation,
it is clearly the best choice rod approximation equation.
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